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The linearized initial-value problem for a two-dimensional, unbounded, exponen- 
tially stratified, plane Couette flow is considered. The solution is used to evaluate 
the evolution of wave-packet perturbations to the mean flow for all Richardson 
numbers J > a, demonstrating that a consistent wave-packet approach to wave 
propagation in these flows is possible for all J > 1. It is found that the vertical 
influence of awave-packet perturbation is limited to a distance oforder (J - ))b/k,, 
where k, is the magnitude of the initial central wave vector. These results are 
used to clarify the J 2 4 conclusions of an earlier treatment by Booker & 
Bretherton. 

1. Introduction 
The first detailed attempt to solve the initial-value problem for a stratified 

shear flow seems tokave been that of Eliassen, H~iland & Riis (1953). That theirs 
is not the complete solution to the problem for the stable regime (Richardson 
number J > t )  was.demonstrated by Case (1960) and Dyson (1960)) who, though 
apparently unaware of the earlier work, showed that the discrete normal modes 
of the kind considered by Eliassen et al. for J > 4 do not constitute a mathe- 
matically complete set of functions. The Fourier and Laplace inversion integrals 
which formally complete the initial-value problem of Case appear to be too 
involved for computation of the time evolution of any interest'ing initial distur- 
bances. Case was, however, able togive arather thorough stability analysis for the 
problem of a semi-infinite exponential atmosphere. 

Bretherton (1966) and Booker & Bretherton ( 1  967) considered the problem of 
wave propagation in a stratified shear flow with specific attention to critical- 
Ievel absorption of wave energy and momentum. Bretherton (1966) used a 
WKB approximation t o  the governing equat'ions valid for large Richardson 
numbers ( J  1). Booker & Bretherton (1967) considered first a single normal- 
mode solution, and associated the discontinuity in normal-mode amplitude 
exp [ - n( J - t)b]  at the critical level with a ' transmission coefficient' for wave 
energy and momentum. They then considered the specific initiallboundary- 
value problem of flow over an abruptly imposed sinusoidal corrugation in an 
attempt to demonstrate the validity of their interpretation of the normal-mode 
discontinuity. 

In  this paper we present, for an unbounded fluid, a formal solution to the 
initial-value problem of Eliltssen et al., Case and Dyson which is sufficiently simple 
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that the evolution of realistic disturbances may be evaluated directly. This 
solution is then used to  discuss the problem of wave-packet propagation and 
absorption considered by Bretherton (1966) and Booker & Bretherton (1967). 
In particular we consider the evolution of initial wave-packet perturbations to 
the flow, giving specific attention to their trajectories and energetics. It is demon- 
strated that the problem of internal wave-packet propagation in the presence of 
uniform shear, regardless of its strength, is analogous to that in an intuitively 
simpler system, namely an unsheared flow with a time-dependent buoyancy 
(Brunt-Vaisala) frequency. 

The amertion sometimes made (see, for example, Booker & Bretherton 1967) 
that a consistent wave-packet approach to  wave propagation in these flows is 
restricted to arbitrarily large J is shown to be incorrect. A well-defined (physical 
and mathematical) picture of wave-packet propagation that is completely 
consistent for all J > t is presented. The specific computation of wave-group 
propagation and absorption in the regime J 2 4 serves to supplement and clarify 
the earlier conclusions of Booker & Bretherton (1967) based on the normal-mode 
discontinuity. 

The approach taken here is free from ambiguities arising from the mathe- 
matical singularity a t  a normal-mode critical level. In  particular, it is not neces- 
sary to appeal to the effects of finite viscosity and thermal conductivity for a 
formal verification of the validity of the mathematical approach (see Hazel 1967). 
The procedure outlined herein also copes readily with wave propagation in more 
complex basic systems. 

Although our approach is, strictly speaking, limited to  a linear (Couette) 
velocity profile, it may be extended via a WKB-type procedure to more general 
problems where the shear and buoyancy frequencies vary sufficiently slowly with 
height. Also, discontinuities in flow parameters may be easily dealt with. 

2. The governing equations 
We choose as our basic model a two-dimensional, unbounded, plane Couette 

flow with exponential stratification. The equilibrium velocity, pressure and 
density are given by 

V, = U,(z)ft = Rzft, (2.1) 

dP,(z)/dz = -P,(4 9,  (2.2) 

PO(4 = Po0 exp ( - z/H,), (2.3) 

where g is the acceleration due to  gravity, pa, is a mean density and Hp is the scale 
height for the variation of density. Here and elsewhere, a caret denotes a unit 
vector. We assume an incompressible fluid, which permits the definition of a 
stream function + = $9 through 

v = v + = ( - a$laz, a+/ax). 
The vorticity 4 is given by 

4 = Q = v x v  = - v q .  
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Defining a (constant) squared buoyancy frequency 

9 dP, - 9 
Po dz H p ’  

N2 --_ _ _  

the (linearized) Boussinesq equation of motion is 
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Here and below, all quantities refer to deviations from equilibrium. 

co-ordinates convecting with the mean flow. The transformation defined by 
For our simple model, analysis is greatly facilitated by a transformation to 

c = x - R z t ,  V = Z ,  7 = t  (2.7) 

leads to a governing equation of the form 

(2.8) 

which evidently permits Fourier decomposition in the ‘ spatial’ co-ordinates 
5 = ( 5 , ~ ) .  In preparation for this decomposition, we define a dimensioiiless time 
variable by 

(2.9) 

where k = (kl, k,) is the wave vector of a particular Fourier compone1it.j In  the 
following, we shall have occasion to  take advantage of a simple relationship 
between the Fourier transforms of the stream function $ and t,he vorticity 5. In 
view of (2.5), (2.7) and (2.9), we have 

T(k) = Rt - k,/lc, = R7 - k2/k,, 

&k, T) = k:(l+ T2) $(k, T), (2.10) 

where [(k, T), etc., denote the Fourier-transformed quantities. 

veniently written as 
In  view of (2.9) and (2.10), the Fourier transform of (2.8) may now be con- 

(2.1 1) 

where J E N2/R2 (2.12) 

d2[(k,T) J + - [(k, T) = 0, dT2 1+T2 

is the Richardson number, everywhere constant in this model. The convected 
co-ordinate scheme, and in particular (2.11) have been previously used by 
Phillips (1966) in a WKB approximation to  obtain a proposed spectrum for 
internal waves in a weakly sheared thermocline. 

The formal solution to  the initial-value problem defined by our model system 
plus an arbitrary initial disturbance (taken for convenience to be given by 
c(x, t = O), [(x, t = 0)) is now simply given by 

(2.13) 

t In convected co-ordinates the wave vector k of a particular Fourier component is 
constant in time while in unconvected (‘laboratory’) co-ordinates the wave vector x ( t )  
rotates clockwise from its initial value x( t  = 0) E k and increases in magnitude according 
to tan 8, = k,/k, - Rt - T(k, t ) ,  ~ * ( t )  = ki(  1 + T2), where 8, is the instantaneous polar 
angle of the wave vector, measured from the horizontal. See figure 2. 
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where g(k,7) is the solution to  (2.11) corresponding to the appropriate initial 
conditions. We henceforth deal primarily with the vorticity 6 for convenience. 
The stream function ( and hence the velocities) follows from a similar expression 
according to (2.10). 

It is evident from the result (2.11) that  the initial-value problem for a single 
Fourier component in an unbounded shear flow, when expressed in convected 
co-ordinates, is completely analogous to the initial-value problem in the absence 
of shear but with, in the most general situation, a time-dependent buoyancy 
parameter Ar2(t). The physical situation is indicated in the footnote on p. 91 (see 
also figure 2).  It is important to appreciate that the effect of the imposed shear 
is to carry the planes of constant phase of an initial plane wave disturbance as if 
they were fixed in t'he fluid. A purely kinematic approach using this fact alone, 
along with the familiar zero-shear result that the time dependence of a plane 
wave disturbance is exp (;Art C O S ~ , ) ,  i.e. it depends only on the direction of the 
wave vector, reproduces the most important physical features (for J > 1) of the 
exact treatment given in $ 3  (HartJman 1973). 

3. General solutions 
Before giving the general solutions to  (2.11), it is worthwhile to  note their 

asymptottic (large T) forms. For J + 2 they are 

(3.1) 

Tg In T.  (3.2) 

T+$ * r&- Jlt. 

For J = & these are degenerate and must be supplemented by 

The spatially averaged kinetic energy density per unit mass of a particular 
Fourier component is given by 

2z = @ a T-1+21&Jlt, (3.3) 

so that this simple model is stable to plane wave perturbations of all ware 
vectors for J 2 0. This is in accord with similar models due to Taylor (1931) and 
Case (1960). For J < 0 the model under consideration is seen to  exhibit no 
exponential instabilities, but only power-law instabilities, a characteristic feature 
of infinite Couette profiles. 

A linearly independent pair of solutions to (2.11) is 

(3.4) 

(3.5) where p = -$+[a-J]k  

and P is the standard Gauss hypergeometric function.? The pair (3.4) is useful 
becauseeachisreadily seen to be the complex conjugate of the other and they hence 

t Another, more familiar, pair of solutionsisq5-lP;(@) and $-1QL(q5), where 9 = ( 1  + P - 1  

and Pp and Qp are the familiar Legeridre functions. These are, however, not complex con- 
jugates of each other and are not appropriate for our discussion. Here and throughout, we 
use the notation of Abramowitz & Stegun (1970), t o  which we refer as HRIF followed by 
a section number. 

I (1 + T 2 ) - w y & p ,  *p+ 1 ;  p + 3; (1 + T2)-1), 

( 1  + T2)&+1) p (  - 1. - &p > 1 2 - 1 2p; 4-p; (1 +T2)-') ,  
2 
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FIGURE 1.  The exact (lower solid curve) and approximate (broken curve) stream functions 
for initial conditions $(T = 0) = - 1, d@/dTIT-,, = 0. (a) J = 1. ( b )  J = 5. For J = 5 the 
approximate and exact solutions effectively coincide. The upper solid curve is the exact 
kinetic energy density aE but normalized to  unity a t  T = 0. 

will correspond naturally to travelling wave solutions. The hypergeometric 
series defining (3.4) are also evidently convergent for all T .  

Values of J in the range 0 < J < 4 correspond to potentially unstable con- 
figurations in more realistic models, and although the behaviour of localized 
disturbances in the present model for this range of J is readily determined 
(Hartman 1973), we omit it here. 

The range J > &is characterized by the oscillatory behaviour of the asymptotic 
solutions [see (3. I)]. Throughout this region, then, the individual Fourier com- 
ponents will represent simple travelling waves in convected co-ordinates, and 
we may resort to the usual wave-packet dynamics to study the propagation and 
distortion of an initial wave-packet disturbance. 

To facilitate the study of packet propagation, we first consider the exact 
solutions (3.4) in two limits. I n  the range IJ) 9 1 we may use an asymptotic form 
of the hypergeometric function due to Watson (Erdhlyi et al. 1953, p. 77). I n  this 
limit we may write the solutions (3.4) in the form 

(1  + T2)t  [T + (1  + T2)4]*iJ* [1+ O ( J - J ) ] .  (3.6) 

The usefulness of the pair (3.4) in studying travelling waves is now evident. For 
J positive, these solutions represent slowly growing vorticity oscillations of 
instantaneous frequency RJi/(  1 + T2)4. The algebraic (as opposed to exponential) 
growth for J negative is also evident from these solutions. 

We comment in passing that the approximate solution (3.6) is a remarkably 
good representation of the exact solution even in the region J 2 1, as the com- 
parisons in figure 1 indicate. This fortuitous circumstance will be of value in the 
next section when we discuss the behaviour of wave packets in this flow. It should 
be noted, and is easily verified from (3.6), that the oscillatory behaviour expected 
for J > 4 is in fact quite poorly defined for J N 1 (see also figure 1). 
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The analyticity of the solutions (3.4) as functions of ,U (ErdBlyi et al. 1953, 
p. 68) may be used to obtain limiting forms of the solutions to (2.11) in the region 
J 2 1. To accomplish this, we define E through 

,U = --l+ie 2 , O < e < l ,  

J = 1 €2. from which we see that 4 +  

(3.7) 

(3.8) 

We now wish to  obtain the first term in a power series in e for the solutions (3.4). 
We must supplement the set (3.4) with additional solutions valid a t  e = 0 (the 
set (3.4) is degenerate there). We choose as our fundamental set valid a t  e = 0 
(ErdBlyi et ul. 1953, p. 75) 

F,(T) = ( 1  + T2)) F( - 1, 2; 1 ; (1  + T2)-l), 
P,(T) = (1+T2)tF(-&,$; 4; T2(l+T2)-1), 

( 3 . 9 ~ )  

(3.9b) 

and we writme for convenience the solutions (3.4) near 6 = 0 as 

F*(e,T) ( l + T 2 ) f ~ t i B F ( - t + a i € , $ . a i € ;  1 k i ~ ;  (1+T2)-1). (3.10) 

A slightly involved but straightforward computation yields, to  first order in E ,  

(3.11) 

where b, and b, are explicit transcendental numbers: b, - - 1.5 and b, - 2.4. Of 
primary interest to us is the phase of (3.11), so we write 

F!(e, T) cc F,(T) e*iB(T), (3.12) 

where AT)  bZ[J - t 1 4 ~ 0 ( T ) / ~ o ( ~ )  (3.13) 

and we have used the smallness of E to write tane N E. Both &(T) and Fo(T) are 
easily shown to be monotonic functions of T and in particular it is a simple 
exercise to demonstrate that  Fo(T) has no zeros for real T > 0 and hence the 
phase (3.13) is well defined and finite for all T > 0, to  which we restrict ourselves 
for simplicity. 

We emphasize at  this point that the solutions (3.4) provide, along with the 
Fourier inversion integral (2.1 3), the mathematically complete solution to the 
posed linear initial-value problem. 

4. Wave-packet propagation 
We now proceed to a discussion of the time evolution of initial wave-packet 

disturbances which are coherent superpositions of Fourier components with 
spread Ak about a central wave vector k, subject to IAkl/k, < l .t We shall limit 
our treatment, for the most part, to a discussion of the trajectory of the packet 
centre. The limitations of this wave-packet procedure due to packet dispersion 
are dealt with in the appendix. It is demonstrated there that, for J 3 1 ,  wave- 
packet dispersion (in convected co-ordinates) is pronounced, as it is in the zero- 
shear ( J  = 00) situation, but does not alter the usefulness ofthe ‘ centre trajectory ’ 
analysis in either case. Somewhat surprisingly, packet dispersion becomes steadily 

t Recall thatthecharacteristicdimensionLofapacketdisturbanceisgiven byL - l/lAkl. 
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less significant as J decreases, until, at  the lower limit of interest, J = 8, disper- 
sive effects disappear entirely with the vanishing of the group velocity. The 
dispersion in convected co-ordinates must not be confused with the unrelated 
kinematic dispersion evident in laboratory co-ordinates, which is a consequence 
of the mean shear. These kinematic effects have been eliminated by the trans- 
formation (2.7), allowing a closer scrutiny of the underlying dynamics (see 
figure 2).  

The nonlinear development of our wave-packet disturbances has been con- 
sidered (Hartman 1973) and does not contribute in any significant way to their 
evolution in this basic flow. 

For 0 < J 6 4 the solutions to (2.11) are purely monotonic, and hence wave 
packets in this domain will be subject only t o  minor distortion (in convected 
co-ordinates) as they surrender their energy (in a time w 1/R) to the mean flow 
at the level of their creation. In laboratory co-ordinates these disturbances will be 
spread by the mean flow over horizontal distances in direct proportion to the 
time. It should be evident that, as these solutions contain no time-dependent 
phase, disturbances in this regime cannot act as sources for internal wave 
radiation. Their influence, for practical purposes, cannot be felt at levels above 
(or below) the extreme levels which completely contain the initial perturbation. 
This conclusion clearly holds for all perturbations in our linear treatment, and 
not just the wave packets of immediate interest. 

Before proceeding to  a discussion of the case J > 4, which admits propagating 
disturbances, we pause to examine the physical picture in this range of J .  In 
laboratory co-ordinates there is a clear distinction between J - 1 and J 9 1, for 
in the latter case we expect wave disturbances (packets) to propagate locally 
with little concern for the weak shear. Indeed Bretherton (1966) has shown that 
the validity of a TVKB-type approximation to the governing equation (2.6) for 
this problem hinges precisely on the requirement J 9 1. Somewhat more 
physically, this restriction can be traced directly to the requirement that the 
packet shape (in laboratory co-ordinates) should remain essentially unaltered 
during a characteristic oscillation period. To see this we note only that requiring 
the variation in the mean flow velocity across the packet dimension L - l / ( A k l  
to be much smaller than the characteristic local packet velocity N/ko  leads to 

R/lAkl < N/ko, (4.1) 

or equivalently k,,/lAkl < J I .  ( 4 4  
No such restrictions on J are necessary in convected co-ordinates. Our solution to 
the initial-value problem, and in particular the wave-packet application, does 
not require that the time scale for alteration of the initial configuration ( t  - 1/R) 
be large compared with the internal wave period ( t  N 2nlN). 

We note once again that, as viewed in the ‘lab’ by a real observer, all of these 
disturbances, regardless of the value of J ,  are subject to a kinematic horizontal 
dispersion which is directly proportional to the time, in addition to the ‘dynamic ’ 
dispersion considered in the appendix. That the packet, viewed in the lab, 
appears to lose its spatial integrity owing to the mean shear bears no relevance to 
the fact that the perturbation remains spatially coherent for its entire lifetime 
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and hence may be treated as a packet in the conventional sense, most, conveniently 
in convected co-ordinates. 

We now choose the initial conditions to  generate a wave packet travelling in 
only one direction. For the remainder of our discussion we shall limit ourselves 
to upward-propagating packets, for which - an 6 Bko < an. This is conveniently 
done by choosing [(T = 0) and t ( ~  = 0 )  such that only one of the complex solu- 
tions (3.4) occurs in [(k, 7). To isolate the phase of the solution, we write 

where,f,, and y are both real. The instantaneous position and group velocity of an 
initial wave-packet disturbance with central wave vector k, (centred about 
5. = 0 at  7 = 0 for convenience) are then given in the usual way (see appendix) by 

t(k, 7) = t(k, 7 = 0)f,,(7, k) exp [W, k ) ~ ,  (4.3) 

w = -V,Y(7, k)lko’ (4.4) 

(4.5) q 7 )  = [ - W k Y ( 7 ,  k))P7lk01 
where 8, is the gradient operator in wave-vector space. 

We are now in a position to calculate the motion of wave packets in the system 
a t  hand. Of particular interest is their vertical motion, since tJhis feature of the 
calculation will not be affected by the transformation back to laboratory 
co-ordinates. 

For J > 1 we use the approximate solutions (3.6), which, though derived for 
t8he limit J 9 1 ,  are expected to give reasonably reliable results for all J > 1 on 
the basis of figure 1.  We find in this limit for an upward-propagating packet 

Here (k,, Sk0) represents the polar co-ordinate decomposition of k,. (See also 
footnote on p. 91.) The ultimate vertical displacement is then given by 

This is the result, given by Bretherton (1966) for J $ 1)  that such wave packets 
are limited in their vertical motion by the ‘critical level’ 2, = A’/Rk, corre- 
sponding to their laboratory frequency N(k,/k),. We see that in this context the 
result is expected to be valid for all J for which the approximate solution (3.6) is 
a reasonable representation of the exact solution (3.4) to the linear equations of 
motion. 

I n  the range J 2 1 we use the results of (3.11)-(3.13). We find in this limit 

z(00) = L. 5.(00) = JJ/k,. (4.7) 

where a = b, W(po, F,) - 1.4 and W(po, Po) is the (constant) Wronskian of the 
solutions Po and F,. The function F,(T) is easily shown to lie in C < F, < 00 for 
0 < T < m, where C - 0.5. The ultimate vertical displacement of this packet is 
seen to be 

The factors occurring in (4.9) are all O(1) (the product FgcosOko -+ constant as 
Olio 3 !pr) so the important feature of this exercise is that  the packet centre 
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moves vertically, in the limit J 2 4, only a small fraction of its initial central 
wavelength, which is in turn a small fraction of its overall dimension. We expect 
this result to provide a rough approximation to the packet motion for 4 < J 5 1 ,  
so that the result (4.9), along with (4.7), provides a fairly complete picture of the 
propagation of initial wave-packet disturbances throughout the physical range 

Prom the results (4.7) and (4.9) i t  is apparent that a useful interpolation 
formula, giving the order of magnitude of the maximum vertical displacement 
of a wave-packet disturbance in a stratified shear flow, is 

i < J < o O .  

N ( J  - i )&/k , .  (4.10) 

The final vertical distribution of the initial perturbation energy is now given 
in a straightforward way from the time dependence of the kinetic energy density 
kcand (4.4). It is worthwhile to note that the energy density of these disturbances 
varies continuously on a time scale t N l/R. This behaviour may be traced to the 
action of Reynolds stresses, working a t  the packet edges (and not throughout the 
volume) t o  transfer energy to and from the mean flow. For a detailed discussion 
see Booker & Bretherton (1967, 5 6). For J $ 1, it may be trivially verified from 
(3.6) that maximum energy transfer occurs at lTol = 2-4. In  terms of the packet's 
vertical position, this corresponds to only N 20 % of the ultimate vertical dis- 
placement of a packet with an initially horizontal wave vector. Similar observa- 
tions for the case J 2 1 also apply. 

For reasons that will become apparent shortly, we designate that level in the 
flow which corresponds to the ultimate vertical displacement of a wave packet's 
centre (e.g. (4.7) or (4.9)] as its isolation level 2,. 

The basic physical results of this section are summarized in figure 2 for a specific 
initial disturbance. We have chosen J $ 1 to facilitate the visual presentation. 

In convected co-ordinates. (i) The total packet displacement, for the choice of 
parameters in figure 2, is of the order of several packet diameters. (ii) The motion 
is rectilinear [see (4.6)] and, with the neglect of dispersive effects, the packet 
envelope is not altered in time. [The dispersive effects, as given in the appendix, 
would give rise in the limit t 3 00 to a distortion and growth of the envelope of 
order 10 yo (see (A5)).] (iii) The packet's central wave vector k,, as mentioned 
earlier, remains constant in time (see footnote on p. 91). 

In  laboratory co-ordinates. (i) The horizontal packet motion is unlimited, the 
original disturbance eventually being swept to infinity by the mean flow. 
(ii) The vertical motion of the packet centre, as in convected co-ordinates, is 
confined below the isolation level ZI, but approaches it as t -+ 00. (iii) The packet 
envelope is distorted in time into an eccentric ellipse whose major and minor axes, 
for large t ,  are of order LRt and L / ( R t )  respectively. (iv) The central wave vector 
xo(t) rotates towards the vertical and ultimately increases in magnitude in 
proportion to  (Bt)2 (see footnote on p. 91). (v) The position and velocity of the 
packet centre are given (for any value of J ) ,  from (4.4) and (2.7), by 

- 

7 
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FIGURE 2. The development of an initially circular wave packet of diameter L - 4.2A 
( A  2n/k,) in ( a )  convected and ( b )  laborat,ory co-ordinates. J N 2800. O,, = - $7~. The 
isolation level is 21 = 2L. Three successive instants, Rt = 0, 1 and 10, are depicted. Lines 
within the packet envelope represent points whose motions are 180" out of phase. Dispersive 
modifications (see appendix), amounting t,o at most 10 yo, have been neglected. I n  ( a )  lines 
above and to the left of each packet represent the magnibude of (4.5); the large terminal dot 
represents the limiting ( t  + 00) position of the packet centre. I n  ( b )  the arrows above t,lie 
figures represent the velocity of the packet centre; the highly eccentric packet corresponding 
to  Rt = 10 is off the figure, with centre at ( x , z )  - (20L, 1.8L), length - 1OL and thickness 
~ - i ~ t L .  The horizontal arrow in ( b )  represents the ult,imate velocity v = R Z I ;  of the packet 
centre. 
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t 
FIGURE 3. Packet-centre trajectories, in laboratory co-ordinates, for the parameters of 
figure 2. The initial wave-vector magnitude k, is the same for each trajectory and the polar 
angles @k, are given on the figure. For ok0 = -in, - 6.. the trajectories are identical to the 
z > 0 portion of those for O,, = in, 3n respectively (compare figure 2 ) .  The bottom of the 
loop is reached at Rt = tan@,, (2'' = 0 ) ,  and the packet centre returns to the origin a t  
Rt = 2t8n8kO. 

Notice that the packet's hyizontal velocity in laboratory co-ordinates (4.12 b )  is 
not simply the sum of the 5 component (4.5) of the group velocity in convected 
co-ordinates and the local convection speed Ry(t) as might be anticipated. This 
is due to the non-orthogonality (in laboratory co-ordinates) of the surfaces of 
constant 6 and 7. 

In figure 3 we have displayed several packet-centre trajectories for values of 
OkO in the range 0 < O k ,  < &I. This remarkable motion is accompanied by 
growth in packet energy density to a maximum of sec 8 k o  times the initial (t = 0)  
value [see (3.6)]. The extreme energy density occurs at  To = 0 (Rt = tanOkO), 
which corresponds to the loop bottoms in figure 3. The width W and vertical 
extent A of the loops are given in a straightforward way by (4.11), (4.12) and 
(4.6): 

As pointed out in the appendix, the wave-packet analysis fails for tan OkO 2 (Lko)f 
but can be expected to give qualitatively reliable results for tanBko 5 (Lko)t 
(quantitative reliability requires tan Oko 4 (Lko)*). As Ok0 -+ tan-1 (Lko)t we have 
to a good approximation A - Z,(Lko)* and W N 2A, so that the loops become 
large in this limit. In particular they reach points in the flow which lie at distances 
considerably greater than the distance Z, to the isolation level, but in the opposite 

W(Oko) = 2Z,[sec3 Oko - 118, A(&,) = Z,[secOk, - 11. 

7'2 
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direction. Characteristic trajectories of packets with in < Ok0 < #n may be 
obtained by reflecting figures 2 and 3 in both the x and z planes. Packets traversing 
the loops of figure 3 return to  the origin in a time Rt = 2 tan Ok, with central wave 
vectors of magnitude K (Rt = 2 tan eke) = k, and envelopes distorted by the mean 
shear (see the subsequent discussion for details of the distortion process). 

The regime J 2 t is characterized by the following features. 
(i) A total vertical displacement (i.e. distance to the isolation level) whose 

magnitude is considerably less than a wavelength h [see (4.10)]. 
(ii) The initial packet envelope, being large compared with A ,  extends well 

beyond the packet’s isolation level. (Recall from (4 .11~)  that  all comments 
regarding the packet’s vertical co-ordinate apply in both laboratory and con- 
vected co-ordinate systems.) 

(iii) Viewed in laboratory co-ordinates, the disturbance never completely 
escapes from the region about x = 0 as it does for larger J (figure 2),  for the group 
velocit,y, whose magnitude [from (4.5)] is of order R ( J - a ) , / k , ,  is much smaller 
than t,he extreme cmvective speeds f &RL of the packet envelope region. Hence, 
although the packet centye ultimately proceeds towards infinity a t  a velocity 
approaching RZ, 2, the envelope, which eventually encloses a thin, nearly 
horizontal fluid layer, always crosses x = 0 (it also always crosses z = 0 since 
2, < L) .  It should perhaps be pointed out that, neglecting dispersive effects, the 
development of the packet envelope is purely kinematic. The development may 
be regarded as the kinematic distortion of the initial envelope due to convection 
by the mean shear. Therefore, disregarding dispersion, Rt is a similarity para- 
meter for packet envelopes in flows of differing J ;  the development of a packet 
envelope is independent of the packet’s wave vector. 

We conclude this section by emphasizing that the motion of wave-packet 
disturbances in these flows is characterized by a smooth, orderly, transition from 
large group velocities and vertical displacements for J 1 to zero group velocity 
and vertical displacement for J = a. 

5. A comparison with Booker & Bretherton 
To make contact with the usual normal-mode treatments of this system, we 

begin by considering the normal-mode decomposition of an arbitrary wave 
packet of dimension L and initial central wave vector k,. A single normal-mode 
solution is 

wheref(z) is determined from the normal-mode governing equation plus boundary 
conditions. The vertical structure of the packet is determined by that collection 
of modes associated with k, = k,, and frequency spectrum characterizing the 
packet as a whole. (Complete specification of the packet would, roughly speaking, 
include for each horizontal wave vector k,, - Ak, < k, < k,, + Ak, a set of modes 
(k,, w )  corresponding to that wave vector and the packet’s frequency spectrum.) 
The frequency of motion a t  the packet centre is w, = N(k, /k , ) ,  while the effect of 
the mean shear is to Doppler shift this central frequency to w N w, BRLk,, a t  
the upper and lower packet extremes. (Note that this entire discussion is relevant 
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only t,o the laboratory co-ordinate system.) This characteristic set of frequencies 
rema,ins unchanged as time passes (only in the convected system is the packet 
frequency time dependent). Notice that 

A W / W o  = J-&Lko, (5.1) 

J1) 9 Lk, (5.2) 

where A@ is the frequency spread RLk,,, so that only when 

can we sensibly speak of a single packet frequency 0,. Recall that this important 
condition has already appeared, in a slightly different context, in 5 4, equation 
(4.2).  

Only if (5.2) is satisfied will the normal-mode decomposition of a wave packet 
be dominated by the single normal mode corresponding to (klo,uo) (which we 
identify hereafter as ‘the central normal mode ’). I n  that case we certainly expect 
the normal-mode critical-level discontinuity exp { - n(J - f)i) of Booker & 
Bretherton to play an important role in packet development, and in (4.7) it  was 
shown that, in fact, the packet isolation level 2, is identical to the critical level 
2, of the central normal mode in this range of J .  

In  view of (5.1) and the fact that  Lk, can be made arbitrarily large in this 
discussion, there exists a substantial range of J 9 1 for which Awl@, is not small 
and for which the normal-mode decomposition of a packet disturbance is, 
therefore, not dominated by the central mode. I n  this range (J > 1 but J < (Lko)2) 
we should not necessarily expect coincidence between the isolation level and the 
critical level of the central mode. It is rather remarkable that, according to (4.7), 
these levels actually coincide for all J 9 1 (and very nearly coincide even for 
J 2 1) .  For < J < 1 this somewhat surprising correlation finally breaks down 
with 2, N ( J  - t ) * / k ,  and 2, = Jh/k,. I n  this latter regime 2, and Zc both remain 
well within the packet envelope for all time, both being, in fact, smaller than a 
wavelength. 

It remains to reconcile the essentially non-existent wave-packet propagation 
in the regime J 2 t with the large (nearly unit) critical-level ‘transmission 
coefficient’ of Booker & Bretherton. As we have seen, a wave packet is necessarily 
associated with a spectrum of frequencies within &Rk, L of its central frequency 
oo = N(L,/k), .  For J N 4 we have R N 2 N ,  SO that  

(5.3) - Lkooo < w < LkoWo 

roughly defines the relevant spectrum of normal-mode frequencies. Now 
Aw/w, N Lk, 9 1, so (5.3) shows that there is essentially an equal number of 
positive- and negative-frequency normal modes. Since the sign of the frequency 
of a mode (for k, N kl0) corresponds to the direction of its individual contribution 
to the momentum flux (i.e. to  the sign of both horizontal and vertical components), 
the net momentum flux of the superposition of modes may be (and is) arbitrarily 
small. The marked reduction in net momentum flux due to  this cancellation is 
further enhanced by the relative weakness of the Reynolds stresses in this regime 
(these go like ( J  - %)&; see Booker & Bretherton 1967). 
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It should be emphasized here that (i) the substantial cancellation of normal- 
mode momentum flux, (ii) the large relative frequency spread Aw/oo and (iii) the 
perpetual intersection of the lines x = 0 and z = 0 by the packet envelope (see 
9 4) are but a few of a large cIass of equivalent statements applying to  the entire 
range $ 6 J < (LIC,)~. I n  this range, we must, from the normal-mode point of 
view, use normal modes with critical levels on both sides of z = 0 to construct a 
packet, and we should not expect that  any single mode in that collection (e.g. the 
‘centraI’ mode) would reflect in an accurate way the development of the wave 
group as a whole. Again, i t  must be viewed as accidental that such a procedure 
actually leads to a qualitatively accurate picture of wave propagation in these 
flows in t,he range 1 < J < (LIc,)~. 

I n  summary, the normal-mode approach is, as it must be, entirely compatible 
with our treat,ment. The discussion here does, however, point out the care with 
which the analysis of wave propagation based on the considerat’ion of single 
normal modes must be made. 

6. Conclusions and discussion 
We have presented an alternative to the initial-value problem of Eliassen et al. 

and of Case for an unbounded fluid which is sufficiently tractable analytically to 
consider the evolution of initial perturbations of physical interest. 

I n  calculating the detailed trajectories of wave-packet disturbances to the 
basic flow (2.1), we find that the rather intricate possible motions share one 
important common feature: the existence of an ‘isolation level’ in  the flow 
beyond which the packet centre cannot penetrate. For a packet originally a t  
z = 0, the magnitude of this ultimate vertical co-ordinate is IZ,I N ( J  - $)t/li, for 
all J 3 2. I n  terms of overall packet motion, the vigour and extent ofthat motion 
is a smoothly varying function of the Richardson number J ,  and vanishes in a 
uniform manner as J 3 t. Thus the vertical transport of energy and momentum 
for this class of disturbances also vanishes in a regular way as J -+ a. 

Of the semi-infinite range of J for which our model is stable, three subranges 
are of physical significance. 

(i) For 0 < J 6 no propagation occurs and localized disturbances are 
absorbed into the mean flow a t  the level of their creation. 

(ii) For 6 J 5 (L~c , )~ ,  the packet’s isolation level lies within the packet 
dimension L and wave-packet envelopes never completely escape the vicinity 
(.c = z = 0 )  of their creation, although their centres do eventually propagate 
towards infinity at the speed v = RZIS.  

(iii) For (Lko)2 < J < 00 packets do escape from the origin (in the sense that 
the packet envelope eventually fails to intercept either the 5 or z axis). 

These three divisions also arise naturally in a careful normal-mode treatment 
of wave-packet propagation. 

In reconciling our results with the normal-mode approach of Booker & 
Bretherton (1967), we have seen that for J $ ( L ~ L , ) ~  the results of a rigorous wave- 
packet treatment are entirely compatible with the interpretation of the squared 
normal-mode critical-level discontinuity exp { - 2 n ( J  - &)*} as a ‘transmission 
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coefficient' for realistic wave disturbances. For J 2 1 the critical-level disconti- 
nuity, considered as a transmission coefficient, leads to essentially correct con- 
clusions regarding wave propagation, although this circumstance must be 
viewed as largely accidental in view of the discussion in $5.  I n  the regime 
4 < J < 1, the consideration of a single normal mode fails utterly to provide a 
realist'ic physical description of the localized disturbances of the kind considered 
here, and a proper superposition of modes is essential to an understanding of wave 
phenomena in this range of J .  It is unfortunate, in a way, that one can correctly 
infer a great deal about the development of wave disturbances in the range 
1 6 J < (Lko)2 by considering an isolated normal mode, for such a procedure 
must surely fail in general. Only when a wave group can sensibly be associated 
with a single frequency (e.g. when J > (Lko)2), and hence is dominated by a 
normal mode associated with that frequency, may one anticipate a strong corre- 
spondence between the development of the wave group and the properties of the 
associat>ed normal mode. 

This research was supported by the National Science Foundation Grant 
GP-34637X and the Advanced Research Projects Agency of the Department of 
Defense Grant DA-ARO-D-3 1- 124-72-Gl8 1. 

Appendix. Packet propagation, modification and dispersion 
We refer to any good electrodynamics or acoustics textbook (e.g. Strattoii 

1941, chap. 9) for a thorough discussion of wave-packet dynamics. For our 
purposes we summarize below the results of applying the wave-packet procedure 
to the initial disturbance (A 1 )  [and associated Fourier transform (A Z ) ] .  We have 

C(x, t = 0 )  = <(5, T = 0 )  = u(5)  exp [ ik , .  51, (A 1) 

[ (k , t  = 0 )  = ic"(k-k,) Z(6k). (A21 

Here a(5) is the packet 'envelope' function of typical dimension L. Expanding 
to first order in (Lk0)-l in the integrand of (2.13) we find 

r(5, 7 )  = 4 5  + V , y ( k ,  T)).fm(ko, 7 )  exp {i[?(kO> 7 )  + ko * 53). (A 3) 

From (A 3) the results (4.4) and (4.5) follow directly. Here fm(ko, T )  occurs as a 
simple time-dependent packet amplitude. To study packet dispersion and shape 
modification, we must consider corrections of order (Llco)-2 in the expansions 
leading to  (A3). At this order, f,, preferentially alters the amplitudes of the 
various Fourier components occurring in (2.13) and thus gives rise to packet shape 
modifications. These modifications are small and uninteresting and can be dealt 
with in a straightforward manner (Hartman 1973). We ignore them entirely in 
this presentation. 

The phase y ( k ,  7 )  determines the interesting features of packet propagation 
(A 3) and dispersion. Rather than outline a rigorous mathematical treatment of 
dispersion in this system, we resort to physical arguments for brevity. The 
dispersion of the packet is due to a spread in the group velocity Avg arising from 
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the spread in wave vectors 1 Akl N 1/L. The effect on the overall packet size and 
shape due to the dispersion is measured by AL(T)/L, where 

Here the integrand is an appropriate measure of the instantaneous spread in 
group velocity. From (4.4), (44, (4.10) and (A 4) we can write, for the maximuin 
packet clistortion, 

Physically, the dispersion for J N 1 is limited because of the reduced time scale 
1/R for the dispersive effects to occur. In  the weak-shear limit J $ ( k , 1 5 ) ~  the 
packet dispersion approaches t,hat for the zero-shear (or aconstic, or electro- 
magnetic) case, in which the packet always eventually spreads in proportion to 
the time (in a dispersive medium). 

Hence, somewhat paradoxically, the packet size in convected co-ordinates is 
much less affected during its lifetime for J - 1 than for J 9 1.  That is to say our 
concepts of packet ‘centre’ and ‘edges’ are more valuable and more precisely 
definable in the small-J case than for J 3 1, where wave-packet approaches have 
previously been used (Bretherton 1966). 

AS a final caveat, we point out the limitations of the wave-packet analysis 
imposed by the expansion leading to  (A 3). For tan OkO > 0 the procedure leading 

U r n )  1 a 1 W ) I  (J-iP (-4 5) -N--N- 

L L2 ak0 (Lko)2 * 

to (A 3) requires tan eke 4 (Lk,)f, (A6)  
while for tan O,,., < 0, we must have 

I tan Ok0 I < Lk,. (-4 7 )  

Thus the analysis fails for packets whose initial central wave vectors lie sufliciently 
close to t,he vert,ical. Qualitatively, however, we can expect the analysis of 9 4 t o  
be useful throughout the range 

0 < tan Oko 5 (Lko).f, - Lk, 5 tan Okn Q 0. 
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